
BIGGER, BADDER BUGS

Abstract. In this paper we motivate the ‘principles of trust’, chance-credence
principles that are strictly stronger than the New Principle yet strictly weaker than
the Principal Principle, and argue, by proving some limitative results, that the
principles of trust conflict with Humean Supervenience.

1. Introduction1

Humean Supervenience is the speculative, albeit appealing, thesis that the nomic2

supervenes on the categorical.1 This paper asks whether Humean Supervenience is3

compatible with there being a tight enough connection between chance and rational4

credence, and offers new reasons for thinking not.5

Past work is instructive.2 There is, on the one hand, some familiar bad news for6

Humeans: Humean Supervenience is incompatible with the Principal Principle. In7

fact, Humean Supervenience is incompatible with the weakening of the Principal8

Principle one gets by a restriction to initial chance and rational initial credence. If9

Ch is the initial chance function, Cr is the class of rational initial credence functions,10

p is a proposition, and ⟨Ch(p) = x⟩ is the proposition that the initial chance of p11

equals x, then we have the following, a principle that asserts that rational initial12

credence reflects initial chance:313

Reflection. ∀π ∈ Cr : π(p | ⟨Ch(p) = x⟩) = x.14

As the so-called ‘big, bad bug’ shows, Humean Supervenience and Reflection are15

not both true if chance has the features that science takes it to have. (See §3 for16

more.)17

There is, on the other hand, some familiar good news for Humeans: Humean18

Supervenience is compatible with the New Principle.4 Restricting the New Principle19

to initial chance and rational initial credence gives us the following, a principle that20

asserts that rational initial credence new-reflects initial chance:21

Date: August 2023.
1Like Briggs (2009a),we take Humean Supervenience to be necessary and a priori if true,distinguishing

it from the thesis that the nomic supervenes on the distribution of the categorical properties which
are intrinsic to point-sized regions or objects, which may be, as Vranas (2002) and Lewis (1994) argue,
contingent and/or a posteriori. Although, for reasons discussed in footnote 13, that assumption may not
be necessary.

2The literature discussing Humean Supervenience and chance-credence principles is vast; see e.g.
(Arntzenius and Hall, 2003), (Bigelow et al., 1993), (Briggs, 2009a,b), (Hall, 1994, 2004), (Halpin, 1994,
1998), (Hicks, 2017), (Ismael, 2008), (Levinstein, 2023), (Lewis, 1980, 1994), (Pettigrew, 2012, 2015, 2016),
(Schaffer, 2003), (Thau, 1994), (Vranas, 2002), and (Ward, 2005).

3Let Cht be the chance function that holds at time t, and let q be any proposition. The Principal
Principle is the following: ∀π ∈ Cr : π(p | q ∧ ⟨Cht(p) = x⟩) = x, if q is admissible w.r.t. ⟨Cht(p) = x⟩. See
(Lewis, 1980).

4Let Cht be the chance function that holds at time t, and let q be any proposition. Then we have the
New Principle : ∀π ∈ Cr : π(p | q∧ ⟨Cht(p | q) = x⟩) = Cht(p | q∧ ⟨Cht(p | q) = x⟩). See (Hall, 1994), (Lewis,
1994), and Thau (1994).
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New Reflection. ∀π ∈ Cr : π(p | ⟨Ch(p) = x⟩) = Ch(p | ⟨Ch(p) = x⟩).22

Chance having the features science takes it to have does not force a choice between23

Humean Supervenience and New Reflection. (See §4 for more.)24

Past work leaves much undecided, however. New Reflection does not draw a25

tight enough connection between chance and credence. And a case can be made26

that Reflection is stronger than need be: that the connection between chance and27

rational credence can be tight enough, even if Reflection fails. An investigation of28

intermediate chance-credence principles, strictly stronger than New Reflection and29

strictly weaker than Reflection, is thus prompted.30

This paper focuses primarily on three such: collectively, the principles of trust.531

The first asserts that rational initial credence simply trusts initial chance:32

Simple Trust. ∀π ∈ Cr : π(p | ⟨Ch(p) ≥ x⟩) ≥ x.633

The second strengthens Simple Trust by ensuring that a rational initial credence34

function updated on some information simply trusts initial chance updated on the35

same information, thus asserting that rational initial credence resiliently trusts initial36

chance:37

Resilient Trust. ∀π ∈ Cr : π(p | q ∧ ⟨Ch(p | q) ≥ x⟩) ≥ x.738

The third, strictly stronger than the previous two, strengthens Simple Trust by39

extending it to the expectation of all random variables. If χ is a random variable,40

Eπ(χ) is the expectation of χ derived from some rational initial credence function41

π, and ECh(χ) is the expectation of χ derived from Ch, then we have the following,42

a principle that asserts that rational initial credence totally trusts initial chance:43

Total Trust. ∀π ∈ Cr : Eπ(χ | ⟨ECh(χ) ≥ x⟩) ≥ x.844

Simple Trust and Resilient Trust may be easier to grok, but Total Trust is the principle45

of greater interest, the principle demarcating the jointier epistemic joint. Some46

properties that chance ought to have — some properties that chance must have,47

we claim, if the connection between chance and rational credence is tight enough —48

are had by chance only if Total Trust holds. (See §6 for more.)49

Reflection is substantially stronger than Total Trust, as recent work on higher-50

order evidence underscores. A case can be made that rational initial credence,51

though not reflecting itself, totally trusts itself.9 Hoping that Humean Supervenience52

will prove compatible with Total Trust, despite being incompatible with Reflection,53

is thus — prior to a proper investigation of the matter — not unreasonable.54

But the new news is bad news for Humeans. The compatibility of Humean55

Supervenience and Total Trust is doubtful. In fact, in light of the limitative results56

proved below, it is doubtful that any rational initial credence function totally trusts57

initial chance if Humean Supervenience holds. One of the bigger, badder bugs58

below concerns Simple Trust. We develop an argument that no rational initial59

credence function simply trusts initial chance if Humean Supervenience holds. But60

the assumptions of that argument are stronger than are the assumptions needed for61

5For discussion of intermediate chance-credence principles, including the principles of trust, see e.g.
(Dorst, 2019, 2020), (Dorst et al., 2021), (Elga, 2013), (Levinstein, 2023). Also see (Schervish, 1989).

6Equivalently, using upper bounds: ∀π ∈ Cr : π(p | ⟨Ch(p) ≤ x⟩) ≤ x.
7Equivalently, using upper bounds: ∀π ∈ Cr : π(p | q ∧ ⟨Ch(p | q) ≤ x⟩) ≤ x.
8Equivalently, using upper bounds: ∀π ∈ Cr : Eπ(χ | ⟨ECh(χ) ≤ x⟩) ≤ x.
9This case is made in (Dorst, 2019, 2020) and (Dorst et al., 2021).
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the other bigger, badder bug: the argument that no rational initial credence function62

totally trusts chance if Humean Supervenience holds.63

2. Inventory of Formal Tools64

Let us begin with an inventory of the formal tools invoked below.65

There is, to begin with, a set of possible worlds, W, assumed (for convenience)66

to be finite, and a set of propositions, identified with the powerset of W.10
67

There is also a set of random variables. A random variable χ is a function that maps68

each possible world w to some real number, χ(w), the value of χ at w. One special69

set of random variables is the set of indicator variables, the random variables whose70

only possible values are 0 and 1. The set of indicator variables is, in a certain sense,71

interchangeable with the set of propositions: for each indicator variable χ, there is72

a unique proposition that contains world w just if χ(w) = 1; for each proposition p,73

there is a unique indicator variable that maps world w to 1 just if w is an element74

of p.75

There is the aforementioned set of rational initial credence functions, Cr. Every76

credence function maps each proposition to some real number on the unit interval,77

and we assume that every rational initial credence function is a regular probability78

function: a function that satisfies the probability axioms and gives nonzero credence79

to every nonempty proposition.11 Rational credence evolves: a rational agent’s80

present credence is arrived at by conditioning their rational initial credence function81

on the information they have gathered heretofore. But to keep things simple, we82

set non-initial credence aside, letting ‘credence’ hereafter denote initial credence.83

There is also the chance assignment, a function that maps each world w to the84

initial chance function that holds at w, namely, Chw. We assume that every possible85

initial chance function is a probabilistic credence function. Chance evolves: the86

present chances are arrived at by conditioning the initial chance function on the87

history of the world heretofore. But to keep things simple, we set non-initial chance88

aside, letting ‘chance’ hereafter denote initial chance.89

Uncertainty about chance is uncertainty about chance de dicto. If an agent is90

uncertain whether the chance of p equals x, they are not uncertain, for any world91

w, about whether Chw(p) = x. What they are uncertain about is whether Ch(p) = w:92

whether the chance of p, whatever it is, equals x. Claims about chance are thus,93

unless otherwise noted, claims about chance de dicto. The proposition that the (de94

dicto) chance of p equals x, ⟨Ch(p) = x⟩, is a set that includes world w just if Chw(p) = x;95

the proposition that the (de dicto) chance of p is at least x, ⟨Ch(p) ≥ x⟩, is a set that96

includes world w just if Chw(p) ≥ x.97

Random variables are not bearers of chance; only propositions are. But ran-98

dom variables have (de dicto) chance-expectations, and our space of propositions99

includes propositions concerning the chance-expectations of random variables.100

The chance-expectation of χ, ECh(χ), is a Ch-weighted average of the possible values101

of χ,
∑

v∈W Ch(v)χ(v). The proposition that the chance-expectation of χ equals x,102

⟨ECh(p) = x⟩, is a set that includes world w just if
∑

v∈W Chw(v)χ(v) = x; the proposi-103

tion that the chance-expectation of χ is at least x, ⟨ECh(p) ≥ x⟩, is a set that includes104

world w just if
∑

v∈W Chw(v)χ(v) ≥ x.105

10To ease the exposition, we ignore the distinction between a world and its singleton.
11Assuming that every rational initial credence function is regular simplifies many of the arguments

below. But the assumption is not essential.
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3. The Big, Bad Bug106

With the inventory of formal tools behind us, let us rehearse the big, bad bug:107

an argument that the conjunction of Humean Supervenience and Reflection is108

inconsistent with scientific practice.109

Humean Supervenience is a constraint on the chance assignment. Possible worlds110

can be partitioned by their Humean mosaics.12 A cell of the partition is a mosaic.111

A chance assignment verifies Humean Supervenience just if it maps any pair of112

worlds in the same mosaic to the same chance function.13
113

Reflection is another constraint on the chance assignment. The chance assignment114

verifies Reflection only if some rational credence function reflects the chances it115

engenders. A chance assignment is immodest just if it verifies the following, a116

principle that asserts that each possible chance function gives itself chance one:117

Immodesty. For any worlds v and w, if Chv , Chw, then Chv(w) = 0.118

And, if we ignore degenerate chance assignments (as we will, hereafter), Reflection119

implies Immodesty: a regular probability functions reflects the chances engen-120

dered by a non-degenerate chance assignment only if the chance assignment is121

immodest.14
122

There are chance assignments that verify both Humean Supervenience and123

Immodesty, but there is a third constraint. An adequate chance assignment must124

accord with scientific practice. It is not easy to say what it takes to accord with125

scientific practice, but a necessary condition is ready to hand. Consider the best-126

system function: a function that maps each mosaic to the theory or theories that127

best systematize the mosaic, as judged by the method of theory choice implicit in128

science. Any theory that could be among the outputs of the best-system function129

determines a chance function over the space of possible worlds. A chance function130

systematizes a mosaic just if it is determined by all of the theories to which the131

best-system function maps the mosaic. To accord with scientific practice, a chance132

assignment must verify:133

Possible Systematization. Every chance function is compossible134

with every mosaic it systematizes.135

Verifying Possible Systematization is easy if Humean Supervenience fails, since136

different chance functions then can hold at worlds in the same mosaic. But if Humean137

Supervenience holds, then a chance function is compossible with a mosaic only if it138

is necessitated by the mosaic. Humean Supervenience and Possible Systematization139

thus together imply:140

Necessary Systematization. Every chance function is necessitated141

by every mosaic it systematizes.142

12Or anyway one must assume to take Humean Supervenience seriously.
13Here we rely on the assumption Humean Supervenience is necessary if true. For a defense of

the assumption, see (Briggs, 2009a, 443-44). But insofar as we are interested in Resilient Trust or Total
Trust, the assumption is not essential. If Humean Supervenience is contingent, then we can focus on the
following claim entailed by Resilient Trust: every rational initial credence function updated on Humean
Supervenience simply trusts chance update on Humean Supervenience.

14Reflection is a norm of local chance reflection. There is also a norm of global chance reflection:
∀π ∈ Cr : π(p | ⟨Ch = Chw⟩) = Chw(p). The global norm straightforwardly implies Immodesty; see Fact
3.1 of (Dorst, 2020, 616). And although, strictly speaking, the local and global norms are not equivalent,
the difference between them can be ignored. For, as Gallow (2023) proves, they come apart only in the
degenerate case in which the chance assignment is ‘half-cyclic’.
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A chance function is system-modest just if it assigns positive chance to a mosaic143

systematized by a distinct chance function. If some mosaic is systematized by a144

system-modest chance function, then Immodesty and Necessary Systematization145

are not both true. Possible Systematization,Humean Supervenience,and Immodesty146

together imply:147

Immodest Systematization. No mosaic is systematized by a system-148

modest chance function.149

And therein lies the problem, for Immodest Systematization is false. There is room150

for disagreement about when a chance function systematizes a mosaic. The method151

of theory choice implicit in science is not entirely transparent to us. But nor is152

it entirely opaque. We know enough about it to know that some mosaics are153

systematized by system-modest chance functions.154

There are realistic ways of illustrating the failure of Immodest Systematization.155

Lewis (1994, 482) appeals to radioactive decay, noting that a mosaic systematized156

by a chance function that encodes one half-life for a given radioactive particle gives157

positive chance to mosaics systematized by distinct possible chance functions that158

encode distinct half-lives for the same radioactive particle. But partly to make the159

problem clearer and partly to set the stage for the limitative results below, we will160

appeal to, as we call them, ‘flip models’.161

Each flip model is associated with some natural number, n. The mosaic of a162

world in an n-flip model is a binary sequence of length n, envisaged, picturesquely,163

as the outcomes of the flips of some quantum coin: HTHHTH . . . . We assume that164

every binary sequence of length n is the mosaic of some world in the n-flip model;165

we assume — identifying worlds and mosaics and thereby hardcoding the truth166

of Humean Supervenience — that no binary sequence of length n is the mosaic of167

more than one world in the n-flip model; and we assume each world w has some168

precise chance function, Chw.15 We thus can refer to an n-flip model as a pair ⟨W,P⟩,169

where W is the set of binary sequences of length n, and P is a function from W to170

probability functions over W, i.e., P : W → ∆(W), w 7→ Chw.171

We call a chance function IID when it treats the coin flips as independent and172

identically distributed. Formally, if H j is the proposition that the jth flip lands heads,173

then:174

IID. Chance function Ch is IID just if, for any j and k, j < k ≤ n:175

(1) Ch(H j ∧Hk) = Ch(H j)Ch(Hk), and176

(2) Ch(H j) = Ch(Hk).177

One expects the chances associated with coin flips to be distributed binomially,178

and it is the IID chance functions that deliver binomial distributions. Let IID(x)179

be the IID chance function centered on x, the chance function that deems each flip180

independent and accords each flip chance x of landing heads; and let ⟨Ch = IID(x)⟩181

be the proposition that holds at world w just if Chw = IID(x). If w is a world in the182

n-flip model at which ⟨Ch = IID(x)⟩ holds, and v is a world in the n-flip model at183

which k of the n flips land heads, then Chw(v) = xk(1−x)(n−k); hence if ⟨#H = k⟩ is the184

proposition that exactly k of the n flips land heads, Chw(⟨#H = k⟩) =
(n

k
)
xk(1 − x)(n−k).185

Some venerable approaches to chance entail that every world in a flip model is186

systematized by an IID chance function. For example, according to frequentism,187

15For some w, Chw may be deterministic, i.e., it may specify result of each flip with probability 1.
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whenever exactly k of the n flips at world w land heads, Chw = IID(k/n). Frequentism188

is not obvious, however. Consider the following, from the 20-flip model:189

wi : HHHHHHHHHHTTTTTTTTTT190

It may be that the best-system function maps wi to the deterministic theory that191

a flip lands if and only if it is among the first ten flips, in which case the chance192

function that systematizes wi does not treat the coin flips as identically distributed.193

But we know that many worlds in flip models are systematized by IID chance194

functions — IID chance processes are ubiquitous in science, the norm from which195

exceptions deviate. We know that the following, from the 20-flip model, is system-196

atized by IID(1):197

w j : HHHHHHHHHHHHHHHHHHHH198

We know that the following, from the 20-flip model, is systematized by IID(0):199

wk : TTTTTTTTTTTTTTTTTTTT200

And we know that many of the worlds wherein exactly half of the flips land heads201

are systematized by IID(1/2), the following being a good candidate:202

wl : HTHTHHTTTHHHTTTHTTHH203

Arguably, we know something stronger. The great virtue of focusing on flip204

models is that it allows to state precise claims about what science requires of the205

chance assignment, and a case can be made that we know the following, a principle206

that asserts that IID(x) systematizes some world in the n-flip model whenever x is207

the actual proportion of heads to flips at some world in the model:208

Proportional Systematization. For any m and n, 0 ≤ m ≤ n, there is209

some world in the n-flip model systematized by IID(m/n).210

Proportional Systematization is plausible and interesting, and it will play an im-211

portant role in one of the bigger, badder bugs to come.212

But if our aim is only to bring out the falsity of Immodest Systematization,213

nothing so strong is needed. Indeed, the following suffices:214

Nontrivial Systematization. In some n-flip model, some world is215

systematized by IID(x), 0 < x < 1, and some world is systematized216

by some chance function distinct from IID(x).217

Nontrivial Systematization is an extremely weak claim about what science requires218

of a chance assignment,yet it is inconsistent with Immodest Systematization. If some219

world in the n-flip model is systematized by IID(x), and some world is systematized220

by a chance function distinct from IID(x), then every world systematized by IID(x)221

is systematized by a system-modest chance function, since IID(x) gives positive222

chance to every world in the n-flip model.223

Taking a step back, we can see the structure of the gauntlet facing Humeans.224

The big, bad bug has three parts. There is a scientific part, a purported claim225

about what science requires of the chance assignment. There is an epistemological226

part, the claim that the connection between chance and rational credence is tight227

enough only if Reflection holds. And there is the mathematical part, a proof that228

Humean Supervenience is inconsistent with Reflection, given the purported claim229

about what science requires of the chance assignment. Humeans wax poetic about230

the epistemological virtues of their metaphysics, the optimific balance of strength,231

simplicity, and fit that chance and laws as they envisage them achieve. But the big,232

bad bug is an impossibility result, and waxing poetic is not adequate response to an233
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impossibility result. What Humeans need is a tenability result: a proof that Humean234

Supervenience is consistent with some not-too-loose connection between chance235

and rational credence, given some not-too-weak claim about what science requires236

of the chance assignment.237

4. New Reflection238

The gauntlet facing Humeans would be less formidable if New Reflection drew239

a tight enough connection between chance and rational credence. But it doesn’t.240

Indeed, New Reflection bears on the connection between chance and rational241

credence only indirectly. What it directly bears on is the connection between242

rational credence and, as we will call it, ‘informed chance’. For each possible chance243

function Chw, there is the proposition that Chw holds, ⟨Ch = Chw⟩, and the informed244

chance function at world w, Ch+w, is Chw(− | ⟨Ch = Chw⟩), the chance function at245

w conditioned on ⟨Ch = Chw⟩. Our space of propositions includes propositions246

concerning the (de dicto) informed chances of propositions. The proposition that247

the informed chance of p equals x, ⟨Ch+(p) = x⟩, is a set that includes world w just if248

Ch+w(p) = x; the proposition that the informed chance of p is at least x, ⟨Ch+(p) ≥ x⟩,249

is a set that includes world w just if Ch+w(p) ≥ x.250

New Reflection is equivalent to the following, a principle that asserts that rational251

credence reflects informed chance:252

Informed Reflection. ∀π ∈ Cr : π(p | ⟨Ch+(p) = x⟩) = x.253

The connection New Reflection draws is thus just as tight as the connection Reflec-254

tion draws, but whereas Reflection connects rational credence and chance, New255

Reflection connects rational credence and informed chance.256

If chance is immodest, then chance and informed chance coincide: Chw = Ch+w257

for each world w. But if Humean Supervenience holds, then chance is modest,16
258

and if chance is modest, then chance and informed chance can come apart.259

A frequentist, 2-flip model provides a simple illustration. There are four worlds,260

HH, HT, TH, and TT. If frequentism holds at each, then ChHH = IID(1), ChHT =261

IID(1/2) = ChTH, and ChTT = IID(0). But the chance of both flips landing heads is262

1/4 only if exactly one flip land heads. So chance and informed chance come apart:263

for example, ChHT(HH) = 1/4 < Ch+HT(HH) = 0.264

The connection New Reflection draws between rational credence and informed265

chance induces an indirect connection between chance and rational credence. But266

the induced connection is not tight enough if chance and informed chance can come267

apart, as we can see by considering anti-expertise.268

Say that credence function π treats de dicto probability function P as an anti-expert269

with respect to some proposition-value pair, (p, x), just if π(p | ⟨P(p) ≥ x⟩) < x and270

π(p | ⟨P(p) < x⟩) ≥ x; and say that P is free of anti-expertise just if no rational credence271

function treats P as an anti-expert with respect to any proposition-value pair. While272

Reflection entails that chance is free of anti-expertise,17 New Reflection does not. In273

fact, it is consistent with New Reflection that chance is rife with anti-expertise.274

Chance is, as Lewis says, a guide to life:275

16Humean Supervenience, Possible Systematization, and the negation of Immodest Systematization
together entail the negation of Immodesty.

17Chance is free of anti-expertise if and only if Simple Trust holds, and Reflection entails Simple
Trust.
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It is reasonable to let one’s choices be guided in part by one’s firm276

opinions about objective chances or, when firm opinions are lacking,277

by one’s degrees of belief about chance. . . . The greater chance you278

think the ticket has of winning, the greater should be your degree279

of belief that it will win; and the greater is your degree of belief that280

it will win, the more, ceteris paribus, it should be worth to you and281

the more you should be disposed to choose it over other desirable282

things. (1980, 287-88)283

But because it is consistent with New Reflection that chance is rife with anti-284

expertise, it is consistent with New Reflection that chance is an anti-guide to life. It285

is consistent with New Reflection that rational agents often take truth and chance286

to be anti-correlated, regarding as evidence against p information that increases287

what they think the chance of p is. It is thus consistent with New Reflection that288

rational agents often prefer a lesser chance to a greater chance of getting the things289

they desire. And that, we think, is absurd. Chance is not an anti-guide to life; and290

from that we conclude that every tight enough chance-credence principle entails291

that chance is free of anti-expertise.292

A two-world model provides an illustration. Suppose that w and v each accords293

the other more chance than it accords itself: Chw(v) = Chv(w) = 0.9, and Chw(w) =294

Chv(v) = 0.1. The agent prefers w to v. The agent divides their credence equally295

between the two worlds and new-reflects chance: π(w) = π(v) = 0.5, and for any296

p, π(p | ⟨(Ch(p) = x⟩) = Ch(p | ⟨(Ch(p) = x⟩)). The agent then regards chance as an297

anti-expert: the agent thinks that evidence that the chance of w is low is evidence298

that w is true, and thus prefers a lesser chance of getting what they prefer, a lesser299

chance of w, to a greater chance. See Figure 1 for a depiction of this scenario.300

π

w v

0.9

0.1

0.1 0.1

0.50.5

Figure 1. π assigns w and v probability .5. Chw(v) = Chv(w) = .9,
and Chw(w) = Chv(v) = .1. π new reflects Ch.

Reflection is tight enough — Reflection entails that chance is free of anti-expertise.301

But Reflection implies Immodesty, and as the big, bad bug shows, Humean Superve-302

nience is incompatible with any chance-credence principle that entails Immodesty.303

The principles of trust thus prove their interest; for all of them entail that chance is304

free of anti-expertise, and none of them imply Immodesty.18
305

18Here is a two-world model that verifies Simple Trust and falsifies Immodesty: Chw(w) = Chv(v) =
0.8; Chw(v) = Chv(w) = 0.2.
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5. Simple Trust306

Simple Trust, the weakest of the principles of trust, is equivalent to the claim that307

chance is free of anti-expertise. So if every tight enough chance-credence principle308

entails that chance is free of anti-expertise, Simple Trust holds.309

Simple Trust also can be motivated by appeal to accuracy. Say that credence310

function π treats de dicto probability function P as expectedly inaccurate just if, for311

some acceptable way of measuring accuracy, π expects itself to be more accurate312

than P; and say that P is free of expected inaccuracy just if no rational credence function313

treats P as expectedly inaccurate. Chance ought to be free of expected inaccuracy.314

The indicator function at world w specifies the value of each indicator variable315

at w, thus, given the aforementioned interchangeability of indicator variables and316

propositions, specifying the truth-value of each proposition at w. Chance is highly317

inaccurate at world w just if the divergence between Chw and the indicator function318

at world w is great, and while proponents and opponents of Humean Supervenience319

disagree about the prevalence of worlds at which chance is highly inaccurate, all320

sides agree that no rational (initial) credence function gives high credence to worlds321

at which chance is highly inaccurate.322

Chance is free of expected inaccuracy only if Simple Trust holds, however. In fact,323

the implication goes both ways. As Levinstein (2023) shows, if the received view is324

correct about what the acceptable ways of measuring are — if the acceptable ways325

of measuring accuracy are the additive, strictly proper, truth-directed measures that326

satisfy certain continuity and limit assumptions — then Simple Trust is equivalent327

to the claim that chance is free of expected inaccuracy.19
328

6. Total Trust329

It is doubtful that Simple Trust is itself tight enough, however, for two reasons.330

The first concerns accuracy. The accuracy argument for Simple Trust, when gen-331

eralized, becomes an argument for Total Trust. The specification function at world332

w generalizes the indicator function at world w, specifying the value of all random333

variables at w. A probability function P induces an estimate function, EP, which334

maps each random variable χ to some real number, EP =
∑

W P(w)χ(w), and just as335

divergence is distance between probability and indication, estimate inaccuracy —336

the generalization of inaccuracy to all random variables — is divergence between337

estimate and specification. The estimate inaccuracy for a set of random variables338

of probability function P at world w is a measure of how far apart EP is from the339

specification function for those variables at w.20
340

Say that credence function π treats de dicto probability function P as expectedly341

estimate inaccurate just if, for some acceptable way of measuring estimate inaccuracy,342

π expects itself to be more estimate accurate than P for some random variable; and343

say that P is free of expected estimate inaccuracy just if no rational credence function344

expects itself to be more expectedly estimate accurate than P for any random345

variable. Chance ought to be be free of expected estimate inaccuracy, for the same346

reasons that chance ought to be free of expected inaccuracy. But, as Dorst et al.347

(2021) show, generalizing the result proved in Levinstein (2023), if the received view348

is correct about what the acceptable ways of measuring estimate inaccuracy are —349

19For the precise conditions required on measures of accuracy, see (Levinstein, 2023).
20For technical details, see (Dorst et al., 2021) and Campbell-Moore (MS).
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if the acceptable measures of estimate inaccuracy are strictly proper, truth-directed350

measures that satisfy certain continuity and limit assumptions — then Total Trust351

is equivalent to the claim that chance is free of expected estimate inaccuracy.21
352

The second reason concerns choice. If chance is a guide to life, then deferring a353

choice to chance — letting chance choose on one’s behalf, as it were; giving chance354

power of attorney — ought always to be rational. But deferring a choice to chance355

is always rational only if Total Trust holds. In fact, the implication holds both ways.356

As Dorst et al. (2021) show, Total Trust is equivalent to the claim that deferring a357

choice to chance is always rational.358

Choice technicalities: A choice is a set of pairwise exclusive options,O = {o1, . . . , on}.359

Each option is a random variable, a function that maps each world to some real360

number which represents how desirable the agent finds the option at the world.361

The expected value of option o, relative to credence function π, V(π, o), equals362 ∑
W π(w)o(w).363

Deferring a choice amongO to chance is a strategy: the chance-expected value of364

option o at world v is
∑

w Chv(w)o(w), and deferring a choice among O to chance is365

a function that maps each world v to some option that maximizes chance-expected366

value at v. If s(w) is the value at w of the option to which world w is mapped by367

the strategy of deferring a choice to chance, then the expected value of deferring a368

choice among O to chance, relative to credence function π, is
∑

W π(w)s(w).369

Credence function π permits deferring a choice among O to P just if, for each o in370

O, V(π, o) ≤ V(π, s). It is rational to defer a choice among O to P just if every rational371

credence function permits deferring a choice amongO to P. And it is always rational372

to defer a choice to P just if, for any O, it is rational to defer a choice among O to P.373

End of choice technicalities.374

It is doubtful that the connection between chance and rational credence is tight375

enough if it is not always rational to defer a choice to chance. Deferring a choice to376

chance is playing the chances, selecting an option that maximizes chance-expected377

value, and if chance is a guide to life, then it should always be rational to play the378

chances. But if it is always rational to defer a choice to chance, then Total Trust379

holds: the claim that every rational credence function totally trusts some de dicto380

probability function P is equivalent to the claim that it is always rational to defer a381

choice to P.22
382

It is an interesting question whether Total Trust is itself tight enough. One383

worry stems from expectation-matching.23 Another worry stems from stochastic384

21For the precise statement and proof of this result, see (Dorst et al., 2021)
22Dorst et al. (2021) offer an example to help illustrate the difference between Simple Trust and

Total Trust. Suppose that there are three worlds, w, v, and u. Suppose that there are two options,
o0(w) = o0(v) = o0(u) = 0, o1(w) = 29, o1(v) = −3, and o1(u) = −13. And consider the following chance
assignment: Chw(w) = 0.45, Chw(v) = 0.10, and Chw(u) = 0.45; Chv(w) = 0.15; Chv(v) = 0.70, and
Chv(u) = 0.15; and Chu(w) = 0.30, Chu(v) = 0.10, and Chu(u) = 0.60. At each of the three worlds, the
chance-expected value of o1 exceeds zero, and hence exceeds the chance-expected value of o0. But some
probabilistic credence functions that simply trusts (and indeed resiliently trusts) this chance assignment
nevertheless strictly prefer o0 to o1. One example is π(w) = 0.17, π(v) = 0.56, and π(u) = 0.27.

23Matching one’s credences to one’s expectation of the chances is a central part of science and an
ubiquitous part of daily life. It is thus insist that a chance-credence principle entail Chance Expectation:
∀π ∈ Cr : π(p) =

∑
W π(w)Chw(p). Reflection entails Chance Expectation, but Total Trust does not, as the

following two-world model illustrates: π(v) = π(w) = 0.5; Chv(v) = 0.9; Chv(w) = 0.1; Chw(w) = 0.8; and
Chw(v) = 0.2; cf. (Dorst et al., 2021, n. 18).
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dominance.24 But what is relevant for our argumentative purposes is the necessity385

claim,not the sufficiency claim,and the case that every tight enough chance-credence386

principle entails Total Trust is strong.387

7. A Bigger, Badder Bug388

Our first limitative result concerns Simple Trust. Consider the following, a prin-389

ciple that asserts that every proposition is compossible with every possible propo-390

sition that sets a positive lower bound on its chance:391

Threshold Compossibility. For every value x > 0, if ⟨Ch(p) ≥ x⟩ is392

possible, then p ∧ ⟨Ch(p) ≥ x⟩ is possible.393

Simple Trust entails Threshold Compossibility. In fact, no regular probability func-394

tion simply trusts chance if Threshold Compossibility fails.25 And as flip models395

make clear, the conjunction of Humean Supervenience and Threshold Compossibil-396

ity is incompatible with plausible claims about what science requires of the chance397

assignment. For example, as we prove in this section, in any n-flip model, n > 4,398

Threshold Compossibility is incompatible with Proportional IID.399

The proof proceeds by cases. Let a k-heads world be a world at which k flips land400

heads, and consider the following, a principle that asserts that IID(k/n) holds at401

some world w in an n-flip model only if w is a k-heads world:402

Matching. For any world w in an n-flip model, if Chw = IID(x/n),403

then w ∈ ⟨#H = x⟩.404

If Proportional IID holds, and Matching fails, then the chance that some world405

accords itself is exceeded by the chance accorded to it by some other world. To see406

this, take an arbitrary counterinstance to Matching: suppose that Chw = IID(k/n),407

and suppose that w is a j-heads world, j , k. Since Proportional IID holds, there is408

some world v in the n-flip model at which IID( j/n) holds. For any z, 0 ≤ z ≤ n, the409

chance of w at a world at which IID(z/n) holds equals (z/n) j(1 − (z/n))n− j, which410

takes its unique maximum at z = j. The chance of w at v thus exceeds the chance411

of w at w, and Threshold Compossibility therefore fails. The proposition that the412

chance of w is at least as high as the chance of w at v is, although possible, not413

compossible with w.414

Threshold Compossibility also fails, however, in any n-flip model, n > 4, if415

Proportional IID and Matching hold, as we see clearly in the 6-flip model. Let416

⟨#H = 2⟩ ∨ ⟨#H = 4⟩ be the proposition that the coin lands heads either exactly two417

24The proposition that the value of option o exceeds x ⟨o ≥ x⟩, is a set that includes world w just
if o(w) ≥ x. The proposition that option oi chance-wise stochastically dominates option o j, ⟨oi ≻ o j,
is a set that includes world w just if (a) for every x, Chw(⟨oi ≥ x⟩) ≥ Chw(⟨o j ≥ x⟩), and (b) for some
x, Chw(⟨oi ≥ x⟩) > Chw(⟨o j ≥ x⟩). Reasoning by chance-wise stochastic dominance is ubiquitous and
intuitive. It is thus natural to insist that a chance-credence principle entail Chance-wise Stochastic
Dominance: ∀π ∈ Cr : if π(⟨oi ≻ o j⟩) > 0, then

∑
W π(w | ⟨oi ≻ o j⟩)oi(w) ≥

∑
W π(w | ⟨oi ≻ o j⟩)o j(w).

Reflection entails that Chance-wise Stochastic Dominance, but Total Trust does not, as the following
four-world model illustrates: π(u) = π(v) = π(w) = π(x) = 1/4; π = Chu; Chv(u) = 2/9, Chv(v) = 1/3,
Chv(w) = 2/9, and Chv(x) = 2/9; Chw(u) = 2/11, Chw(v) = 3/11, Chw(w) = 4/11, and Chw(x) = 2/11;
Chx(u) = 2/13, Chx(v) = 3/13, Chx(w) = 4/13, and Chx(x) = 4/13; oi(u) = 1, oi(v) = 2, oi(w) = 0,
and oi(x) = 4; and o j(u) = 4, o j(v) = 0, o j(w) = 1, and o j(x) = 1. Although π totally trusts chance,∑

W π(w | ⟨oi ≻ o j⟩)oi(w) = 1.5 <
∑

W π(w | ⟨oi ≻ o j⟩)o j(w) = 2.
25If π is a rational credence function, and ⟨Ch(p) ≥ x⟩ is possible, then π(p | ⟨Ch(p) ≥ x⟩) is defined. If

π(p | ⟨Ch(p) ≥ x⟩) is defined, and p ∧ ⟨Ch(p) ≥ x⟩ is impossible, then π(p | ⟨Ch(p) ≥ x⟩) = 0 < x.
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or exactly four times; let w2 be a 2-heads world at which IID(2/6) holds; let w3 be a 3-418

heads world at which IID(3/6) holds; and let w4 be a 4-heads world at which IID(4/6)419

holds. Because of the bell-shape of the binomial curve, Chw3 (⟨#H = 2⟩ ∨ ⟨#H = 4⟩),420

the sum of the fairly high chance w3 accords to 2-heads worlds and the fairly high421

chance w3 accords to 4-heads worlds, exceeds both Chw2 (⟨#H = 2⟩ ∨ ⟨#H = 4⟩), the422

sum of the high chance w2 accords to 2-heads worlds and the low chance w2 accords423

to 4-heads worlds, and Chw4 (⟨#H = 2⟩∨⟨#H = 4⟩), the sum of the low chance that w4424

accords to 2-heads worlds and the high chance that w4 accords to 4-heads worlds.425

Chw2 (⟨#H = 2⟩ ∨ ⟨#H = 4⟩) =
(
6
2

) (2
6

)2 (4
6

)4

+

(
6
2

) (2
6

)4 (4
6

)2

≈ 0.41

Chw3 (⟨#H = 2⟩ ∨ ⟨#H = 4⟩) =
(
6
2

) (3
6

)2 (3
6

)4

+

(
6
2

) (3
6

)4 (3
6

)2

≈ 0.47

Chw4 (⟨#H = 2⟩ ∨ ⟨#H = 4⟩) =
(
6
2

) (4
6

)2 (2
6

)4

+

(
6
2

) (4
6

)4 (2
6

)4

≈ 0.41

For a visual depiction, see Figure 2.426

We thus can produce a counterexample to Threshold Compossibility by taking427

any nonempty subset of ⟨Ch = IID(2/6)⟩ ∨ ⟨Ch = IID(4/6)⟩, which includes exactly428

as many elements of ⟨Ch = IID(2/6)⟩ as ⟨Ch = IID(4/6)⟩. One example is the429

disjunction of w2 and w4:430

Chw2 (w2 ∨ w4) ≈ 0.027

Chw3 (w2 ∨ w4) ≈ 0.031

Chw4 (w2 ∨ w4) ≈ 0.027

The calculations above pertain only to the 6-flip model. But similarly reasoning431

shows that in any n-flip model, n > 4, Threshold Compossibility fails if Proportional432

IID and Matching both hold.26
433

Proportional IID enjoys considerable plausibility. If it is possible that a quantum434

coin flipped n times lands heads exactly m times, then it seems possible that each435

flip of a quantum coin flipped n times be independent and have chance m/n of436

landing heads. A Humean who denies Proportional IID thus denies the possibility437

of something that seems possible. Of course, Humeans are committed to denying438

the possibility of things that seem possible already. It seems possible that an439

indeterministic quantum coin lands heads on each of its n flips. But there is only440

one n-heads world in the n-flip model. So if a Humean thinks that the n-heads441

world in the n-flip model is deterministic, a world in which it is nomically necessary442

26For each m, let wm be a m-heads world in the n-flip model at which IID(m/n) holds. If n > 4 is
even, then w(n−2)/2 ∨w(n+2)/2 is not compossible with the claim that the chance of w(n−2)/2 ∨w(n+2)/2 is at
least x, where x is the chance of w(n−2)/2 ∨ w(n+2)/2 at wn/2. If n > 4 is odd, then w(n−3)/2 ∨ w(n+1)/2 is not
compossible with the claim that the chance of w(n−3)/2 ∨ w(n+1)/2 is at least x, where x is the chance of
w(n−3)/2 ∨ w(n+1)/2 at w(n−1)/2.
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Figure 2. Figure 2(a) displays the probabilities assigned to
0, 1, 2, 3, 4, 5, 6 occurrences of heads for IID(1/2) and IID(1/3). Fig-
ure 2(b) isolates the difference assigned to two occurrences and six
occurrences of heads. Although IID(1/2) assigns lower probability
to there being exactly two occurrences of heads than IID(1/3) does,
it assigns significantly higher probability to there being exactly
four occurrences of heads.

that every flip lands heads, then the Humean must deny that it is possible that443

an indeterministic quantum coin land heads on each of its n-flips. But denying444

Proportional IID is not just denying the possibility of something that seems possible.445

It is one thing to set limits on how far apart the underlying chances and frequencies446

can be. It is another thing to set limits on how close together they can be. The447

chances that feature in our best scientific theories often are arrived at by fitting a448

curve to the actual frequencies.449

And the full strength of Proportional IID is not needed to render Threshold450

Compossibility and Humean Supervenience incompatible. Say that x is a possible451

IID center in an n-flip model just if IID(x) holds at some world in the n-flip model.452

The thrust of the point then can be put, vaguely but helpfully, as follows: Threshold453

Compossibility fails in an n-flip model whenever the possible IID centers are sufficiently454

clustered. Proportional IID entails that the possible IID centers are sufficiently455

clustered, but weakenings do likewise. For example: if there are three possible IID456

centers inclusively between 8/20 and 12/20 in the 20-flip model, then Threshold457

Compossibility fails.458

Reconciling Simple Trust and Humean Supervenience is harder than reconciling459

Threshold Compossibility and Humean Supervenience — Threshold Compossi-460

bility does not entail Simple Trust. But appreciating the challenge of reconciling461

Threshold Compossibility and Humean Supervenience helps us see how formida-462

ble the gauntlet facing Humeans is. Science requires that there be many possible463

IID centers, and apparently weak claims about the diversity and distribution of464

possible IID chance in flip models renders Threshold Compossibility false.465

8. Another Bigger, Badder Bug466

The next limitative result concerns Total Trust. Consider the following, a principle467

that asserts that there are at least two nontrivial possible IID centers in big enough468

flip models.469
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Nontrivial Diversity. If n is big enough, then for some x and y,470

0 < x < y < 1, IID(x) and IID(y) each hold at some world or other471

in the n-flip model.472

There is a claim about the extent of IID chance: a claim, clarified and made precise473

below, about the proportion of worlds in flip models at which IID chance functions474

hold. The claim is weak — it is very plausible that its truth is part of what science475

requires of the chance assignment. And as we prove (in Appendix A), Nontrivial476

Diversity and Total Trust are not both true, if this weak claim about the extent of477

IID chance holds.478

The tension Total Trust engenders in flip models between the extent of IID chance479

and the diversity of possible IID centers is easy to see if we consider a very strong480

claim about the extent of IID chance.481

Call w and v mirrored in an n-flip model just in case the sequence of heads and482

tails in w and v is exactly switched. That is, H j (heads on the jth flip) holds at w just483

in case T j holds at v. For example, in a five flip model, the world HHTTH and the484

world TTHHT are mirrored. The following constraint requires a symmetry between485

mirrored worlds when one has an IID chance function.486

Symmetry. An n-flip model is symmetric just if, for all w ∈ W, if487

Chw = IID(x), and v mirrors w, then Chv = IID(1 − x).488

Let #w be the number of occurrences of heads at w. I.e., #w = k just in case489

w ∈ ⟨#H = k⟩. We then have the following result:490

Initial Triviality. If ⟨W,P⟩ is an n-flip model totally trusted by some491

π, all members of P are IID, and ⟨W,P⟩ is symmetric, then if 0 <492

#w < n, Chw = IID(1/2).493

So, for example, if Total Trust holds, all of the possible chance functions in the494

1000-flip model are IID, and the 1000-flip model is symmetric, then Nontrivial495

Diversity fails; for IID(1/2), then, holds at every world in the 1000-flip model,496

except perhaps the 0-heads and the 1000-heads world.27
497

Here is a sketch of the proof:498

Proof. (Sketch) The proof appeals to a background fact (theorem A.1499

in Appendix A): If ⟨W,P⟩ is an n-flip frame, then some regular500

probability functionπ totally trusts ⟨W,P⟩ if and only if the members501

of P totally trust one another.502

Suppose each element of P is IID, and suppose that ⟨W,P⟩ is503

symmetric. We show that if the elements of P resiliently trust one504

another, then Chw = Chv for all Chw,Chv ∈ P unless there are either505

0 or n occurrences of heads at w or v.506

Let E be the proposition that there are either n − 1 or n total507

occurrences of heads and Hn be the proposition that all flips are508

heads. By Symmetry and the fact that all chance functions are IID,509

all worlds with the same number of occurrences of heads have the510

same chance function. Let Ch j refer to the chance function at all511

27The idea for this result depends on the fact that, in a binomial distribution, the probability of all
flips coming up heads decreases very rapidly for IID(x) as x decreases. Suppose then, that Chw is IID(x)
for some low x. If Chw conditions on the fact that the chance of heads is actually high, it still won’t assign
high probability to all heads. That is, Chw(All heads | Ch(H) is high) will still be too low.
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worlds with j-occurrences of heads and let Ch j(H) = p j.28 Finally, let512

Chn−1(Hn
| E) = x.513

We can then derive that:

Ch1(Hn
| E, ⟨Ch(Hn

| E) ≥ x⟩) = Ch1(Hn
| E)

=
pn

1

npn−1
1 (1 − p1) + pn

1

(1)

and

Chn−1(Hn
| E, ⟨Ch(Hn

| E) ≥ x⟩) = pn−1(Hn
| E)

=
pn

n−1

npn−1
n−1(1 − pn−1) + pn

n−1

(2)

=
(1 − p1)n

n(1 − p1)n−1p1 + (1 − p1)n(3)

= x

(Lines (1) and (2) follow from the fact that H is distributed according514

to a binomial distribution, and line (3) follows from Symmetry.)515

If all functions in P totally trust one another, then they resiliently516

trust one another. So, we check what is required to make line (1)517

greater than or equal to line (3). With some simple algebra, we find518

that this requires p1 ≥ 1/2 and pn−1 ≤ 1/2. Given Resilient Trust, this519

entails that p1 = . . . = pn−1 =
1
2 . □520

We prove a variant of this result in Appendix A (theorem A.12). Of course, even521

if the chance functions at many or most of the worlds in the n-flip model are IID,522

it is doubtful that every possible chance function in the n-flip model is IID. Initial523

Triviality thus puts little pressure, if any, on a Humean. But all that we need to524

render Nontrivial Diversity and Total Trust incompatible is a weak claim about the525

extent of IID chance: the claim, clarified and made precise immediately below, that526

the extent of IID chance in n-flip models does not decrease as n increases.527

For simplicity, we consider only n-flip models where n is even, and we assume528

that there is at least one (n/2)-heads world at which IID(1/2) holds. We put these529

two ideas together with the following axiom:530

Fifty/Fifty. If ⟨W,P⟩ is an n-flip model, then n is even, and at some531

w ∈ ⟨#H = n/2⟩, Chw = IID(1/2).532

It will now be useful to introduce some more definitions. For a given n-flip533

model, we say that a number m is in the IID region of n if there is some m-heads534

world at which an IID chance function holds. In notation, we write IID(Chw) to535

mean Chw is IID, and we define IID reg(n) B {m : ∃w s.t. #w = m and IID(Chw)}.536

We say that m is in the even odds region of n just if there is some m-heads537

world in the n-flip model at which IID(1/2) holds. In notation, EO-region(n) B {m :538

∃w s.t. Chw = IID(1/2) and #w = m}. And we let ℓ(n) be the smallest number in the539

even odds region of n: ℓ(n) B minm m ∈ EO-region(n).540

28For what we’ve said so far, some worlds with the same number of heads might still have (up to
two) different IID chance functions. This slightly complicates the proof in tedious ways, so we omit
details.
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The next axiom codifies the earlier thought that IID chance functions are possible541

at worlds with a reasonable mixture of heads and tails. The specific assumption we542

need is:543

Sufficiency. If ⟨W,P⟩ is an n-flip model, then (1) for all k such that544
n
4 ≤ k ≤ n

2 , k is in the IID region of n, and (2) if 0 is not in the even545

odds region of n, then ℓ(n) − 1 is in the IID region of n.546

The first part of this axiom ensures that an IID chance function holds at some k-heads547

world, if k is between n/4 and n/2. This seems very reasonable, especially in large548

models. There is, taking such a case, some 250,000-heads world in the 1,000,000-549

flip model without any discernible pattern beyond the fact that tails occurs three550

times as often as heads.29 The second part ensures that there is some world with551

an IID chance function centered on something other than 1/2 unless the model is552

completely trivial and assigns an IID chance function centered on 1/2 even in the553

n-heads world.554

The next assumption establishes a particular type of lower bound on the per-555

centage of worlds with IID chance functions.556

Boundedness. There exists d > 0 and N ∈N such that for all n ≥ N,
if ⟨W,P⟩ is an n-flip model and m is in the IID region of n, then

|{w : #w = m and IID(Chw)}|
|⟨#w = m⟩|

≥ d

Here’s the intuition. We let the Humean pick some number n that she counts as557

‘big’. We also let her pick some really small lower bound. For concreteness, say big558

numbers are at least 100 and the lower bound is 1%. We give her a big n-flip model559

and ask her for which m ≤ n there is at least one m-heads world at which an IID560

chance function holds. This axiom then requires that at least one percent of the561

m-heads worlds have IID chance functions. She is free to make ‘big’ be as large as562

she likes, and she is free to make d be as small as she likes so long as it is bigger563

than 0.30
564

This axiom is technical, but innocuous. Worlds at which IID chance functions565

hold are disorganized. There is not much to say about them beyond roughly what566

the frequency of heads to tails is. (If there were more to say, then there would be a567

nice law characterizing the pattern.) As n grows large, more and more worlds are568

disorganized — most sequences appear totally random. Think of a television screen569

with its mix of black and white pixels. There are a few arrangements of such pixels570

that result in discernible patterns, something you could relatively easily describe.571

But for the vast majority, the screen is just random noise. Denying Boundedness is572

akin thinking that discernible patterns are more common as size of the television573

screens increases, which is exactly the opposite of what seems clear. Discernible574

patterns are less common as the size increases.575

The final axiom is required for technical reasons:576

Monotonicity. If ⟨W,P⟩ is an n-flip model and Chw,Chv inP are both577

IID with Chw(H) < Chv(H), then Chw(⟨Ch(Hn) ≥ 2−n
⟩) < Chv(⟨Ch(Hn) ≥578

2−n
⟩).579

29When combined with Symmetry, Sufficiency guarantees there an IID chance function holds at
some k-heads world, if k is between n/2 and 3n/4.

30We can actually weaken this axiom so that it only applies to m in the even odds region of n instead
of in the IID region of n, but it strikes us as a bit less natural when stated that way.
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If all worlds in the model are IID, then Monotonicity is redundant. In that case,580

⟨Ch(Hn) ≥ 2−n
⟩ = ⟨Ch(H) ≥ 1/2⟩. This axiom rules out strange situations where581

many non-IID worlds with relatively few heads for some reason give fairly high582

probability to the claim that all flips land heads.583

We can now state our most powerful result (see Appendix A for proof).584

Serious Triviality. Let ⟨W1,P1⟩, ⟨W2,P2⟩, . . .be a sequence of models585

with |Wi| < |Wi+1|. Assume each validates Sufficiency, Fifty/Fifty,586

Monotonicity, and Symmetry. Moreover, assume that Boundedness587

holds of the sequence. Then there exists an N ∈N such that if i ≥ N588

and some regular probability function totally trusts ⟨Wi,Pi⟩, then589

for all Chw ∈ Pi such that IID(Chw), we have Pw = IID(1/2).590

Serious Triviality tells us that the weak claim about the extent of IID chance — the591

conjunction of Sufficiency, Fifty/Fifty, Monotonicity, Symmetry, and Boundedness592

— implies that Total Trust and Nontrivial Diversity are not both true. If any rational593

credence function totally trusts chance and the weak claim about the extent of IID594

chance holds, then, for large n, every possible IID chance function in the n-flip595

model is centered on 1/2, except possibly the 0-heads and n-heads worlds.596

Science requires both that the extent of IID chance be considerable and that the597

diversity of possible IID centers be many. The case for Total Trust is strong. But as598

the proof of Serious Triviality reveals, no chance assignment that is totally trusted599

by a rational credence function provides both the extent of IID chance and the600

diversity of possible IID centers that science requires.601

9. Conclusion602

The big, bad bug shows that Humean Supervenience is inconsistent with Re-603

flection, given a hard-to-deny claim about what science requires of the chance604

assignment. A promising Humean response is to reject Reflection in favor of some605

principle that draws a looser but still tight enough connection between chance and606

credence. The connection that New Reflection draws is, we argue, not tight enough,607

so we are led to the principles of trust, intermediate principles, which are strictly608

weaker than Reflection yet strictly stronger than New Reflection. The suspicion that609

Humean Supervenience is not consistent with a tight enough connection between610

chance and credence would be greatly reduced with a tenability result: a proof611

that Humean Supervenience is consistent with some or all of the principles of612

trust, given some not-too-weak assumptions about what science requires of the613

chance assignment. But what we have instead are bigger, badder bugs: proofs that614

Humean Supervenience is inconsistent with principles of trust, given stronger but615

still hard-to-deny claims about what science requires of the chance assignment.616

Our limitative results pertain to particularly simple flip models: finite, fixed flip617

models,wherein each world has the same number of flips. Some of our results extend618

to finite, variable flip models, wherein different worlds have different numbers of619

flips.31 But there is more work to do investigating both finite, variable flip models620

and infinite flip models.32
621

31For example: the fact that Simple Trust and Proportional IID are not both true in a finite, fixed flip
model implies that Resilient Trust and Proportional IID are not both true in a finite, variable flip model.

32There is also work to do investigating flip models in which some worlds lack a precise chance
function.
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And there is work to do extending the argument beyond flip models. Realistic622

hypotheses about the world we find ourselves in are, in various ways, unlike a623

world exhausted by a sequence of coin flips. Even if a realistic hypothesis about our624

world could be encoded in a binary sequence, it is unlikely that our best scientific625

theories would treat each bit in the binary sequence as the outcome of some IID626

chance process. But the difference between the worlds in flip models and realistic627

hypotheses about the world we find ourselves in does not obviously provide solace628

to Humeans. Our experience suggests that reconciling Humean Supervenience and629

the principles of trust becomes harder, not easier, as the size and the complexity of630

the model increases.631

The way forward is gradual and mathematically precise, proceeding from less632

to more realistic models. Our limitative results are just some of the very many633

out there — there is a continent to explore. There are many claims about what634

science requires of the chance assignment worth considering and many intermediate635

chance-credence principles besides the principles of trust. The continent is sure to636

contain stronger limitative results than the ones proved here. Whether the continent637

also contains philosophically interesting tenability results remains to be seen. Is638

there any proof that Humean Supervenience is consistent with some tight enough639

connection between chance and credence, given the truth of hard-to-deny claims640

about what science requires of the chance assignment?641

A. Appendix642

In the appendix, we prove a variant of the Initial Triviality result (Theorem A.12)643

and prove the Serious Triviality result (Theorem A.15).644

A.1. Notation and Terminology. As before, we use ⟨W,P⟩ to refer to a generic645

n-flip model. We will switch to using Pw ∈ P to refer to the chance function at a646

world (instead of Chw and P to refer to the (de dicto) chance function—whatever it647

is—instead of of Ch partly for reasons of notational compactness and partly because648

the results hold generically for all such models even when P and Pw are interpreted649

differently.650

As before, we will use loose talk and say that a function Pw is IID when it treats651

the flips in a sequence as IID. Even more loosely, we’ll say a world w is IID just in652

case Pw is IID.653

As in the main text, we will write Pw = IID(x) to mean Pw is IID and assigns654

probability x to heads. It will also sometimes be convenient, when Pw is IID, to655

write Pw(H) = x or Pw(H) ≥ x. As in the main text, we will also write IID(Pw) to656

mean that Pw is IID.657

We’ll say that ⟨W,P⟩ validates Total/Simple Trust just in case all members of658

P totally/simply trust P. More explicitly, ⟨W,P⟩ validates Simple Trust if for all w,659

Pw(p | ⟨P(p) ≥ x⟩) ≥ x for all x, and similarly for Total Trust.660

As a reminder, we also have the following notation:661

• #w refers to the number of heads at w.662

• ℓ(n) is the smallest number k in an n-flip model obeying Fifty/Fifty such663

that for all w where #w = k, w has an IID chance function centered on 1/2.664

• Hn refers to the proposition that all n flips in an n-flip model land heads.665

We also remind the reader of the following principles for reference below (now666

with P and Pw replacing Ch and Chw.667
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Symmetry. An n-flip model is symmetric just if, for all w ∈ W, if668

Pw = IID(x), and v mirrors w, then Pv = IID(1 − x).669

Fifty/Fifty. If ⟨W,P⟩ is an n-flip model, then n is even, and at some670

w ∈ ⟨#H = n/2⟩, Pw = IID(1/2).671

Sufficiency. If ⟨W,P⟩ is an n-flip model, then (1) for all k such that672
n
4 ≤ k ≤ n

2 , k is in the IID region of n, and (2) if 0 is not in the even673

odds region of n, then ℓ(n) − 1 is in the IID region of n.674

Monotonicity. If ⟨W,P⟩ is an n-flip model and Pw,Pv inP are both IID675

with Pw(H) < Pv(H), then Pw(⟨P(Hn) ≥ 2−n
⟩) < Pv(⟨P(Hn) ≥ 2−n

⟩).676

Boundedness. There exists d > 0 and N ∈N such that for all n ≥ N,
if ⟨W,P⟩ is an n-flip model and m is in the IID region of n, then

|{w : #w = m and IID(Pw)}|
|⟨#w = m⟩|

≥ d

A.2. Results. Our main question concerns when a regular probability function677

π can totally trust chance. As it turns out, to answer that question, we just need678

to find out when the frame ⟨W,P⟩ validates total trust, as the following theorem679

establishes.680

Theorem A.1 (Dorst et al.). A regular probability function π totally trusts a frame ⟨W,P⟩681

only if ⟨W,P⟩ validates total trust.682

The proof is involved, so we omit it here and refer the interested reader to (Dorst683

et al., 2021, Theorem 4.1). As we’ll see, our results below entail that the functions684

in P can’t even simply trust one another. We conjecture that no regular probability685

function can simply trust them.686

For what follows, it’s important to keep in mind that if IID(P), then according to687

P, H follows a Bernoulli Distribution with parameter P(H). In turn, if X is a random688

variable representing the total number of heads, then X is distributed according to689

a Binomial Distribution with parameter P(H). If P(H) = p, the probability of any690

given world with #w = k is pk(1− p)n−k. So, if 0 < p < 1, then for all w ∈W, P(w) > 0.691

We now prove some basic facts about models that validate Simple Trust. (Dorst692

(2020) provides a more general result implying part (2) of the following proposition.)693

Proposition A.2. Suppose ⟨W,P⟩ validates Simple Trust. Then694

(1) If ⟨W,P⟩ validates Fifty/Fifty, then for all w ∈W, Pw(w) > 0, and695

(2) For all w, v ∈W, Pw(w) ≥ Pv(w)696

Proof. To prove (1): Let Ph = IID(1/2) be inP. (Existence is guaranteed by Fifty/Fifty).697

For all w ∈ W, it’s clear Ph(w) > 0. Suppose Pw(w) = 0 for some w ∈ W. Then698

w ∈ ⟨P(w) ≤ 0⟩, so Ph(w | ⟨P(w) ≤ 0⟩) is defined and > 0. Contradiction.699

To prove (2): Suppose Pw(w) < Pv(w) = x. Then w < ⟨P(w) ≥ x⟩. So, Pv(w | ⟨P(w) ≥700

x⟩) = 0 < x. □701

Proposition A.3. Suppose ⟨W,P⟩ validates Simple Trust. Let Pw,Pv ∈ P be IID with702

#w < #v. Then Pw(H) ≤ Pv(H).703

Proof. Let Pw(H) = pw and Pv(H) = pv. Suppose #w < #v but pw > pv. Recall that704

if X is the number of heads, then according to both Pv and Pw, X is distributed705

according to a Binomial Distribution with parameters pv and pw respectively. So, if706
#w
n ≤ pv < pw, then Pv(w) > Pw(w), which entails ⟨W,P⟩ violates Simple Trust, (by707
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part (2) of Proposition A.2). Likewise, if pv < #w
n ≤ pw ≤

#v
n , Pw(v) > Pv(v). Finally,708

suppose pv < #w
n ≤

#v
n ≤ pw. In this case, Pv(w) > Pv(v) ≥ Pw(v) ≥ Pw(w), again709

violating Simple Trust by Prop. A.2. □710

Remark. Proposition A.3 does not rule out the possibility of distinct IID chance711

functions at worlds w and v if #w = #v in an n-flip model. Following the proof, we712

see there could be a maximum of two different IID chance functions for worlds713

with the same number of heads, namely, one on each side of #w/n. (This adds a714

wrinkle elided over to the proof sketch of Initial Triviality in the main text, but it’s715

one that can be easily accommodated.) As we’ll now see, there is one important716

exception.717

Proposition A.4. Suppose ⟨W,P⟩ validates Simple Trust and Fifty/Fifty. Then if w ∈W718

is IID and #w = n/2, Pw = IID(1/2).719

Proof. By Fifty/Fifty, some world h ∈W is IID such that #h = n/2 and Ph = IID(1/2).720

So, if Pw is also IID and #w = n/2, then Pw(w) ≤ Ph(w). Given Prop. A.2. Pw(w) ≥721

Ph(w), so Pw(H) = 1/2. □722

Remark. Note that Proposition A.4 guarantees that for any n-flip model ⟨W,P⟩723

validating Simple Trust and Fifty/Fifty, ℓ(n) is defined and ≤ n
2 . Further, we have724

ℓ(n) ≥ 1 by part 1 of Prop. A.2.725

We can also put upper bounds on worlds with IID chance functions that have726

under ℓ(n) total heads.727

Fact A.5. Suppose ⟨W,P⟩ is an n-flip model validating Simple Trust and Fifty/Fifty.728

Suppose Pw is IID for some some world w with #w = ℓ(n) − 1. Then if Pw , IID(1/2),729

Pw(H) < ℓ(n)
n .730

Proof. Suppose ⟨W,P⟩ validates Simple Trust and ℓ(n) ≥ 1. Let #w = ℓ(n) − 1, and731

let Pw = IID(p). Suppose ℓ(n)
n ≤ p. Let v ∈ W with #v = ℓ(n) and Pv = IID(1/2).732

By hypothesis, p , 1/2. By Prop. A.3, p must be < 1/2. But in that case, since733
ℓ(n)

n ≤ p < 1/2, Pw(v) > Pv(v), contradicting Prop. A.2. □734

We know that Pw(H) ≤ Pv(H) if #w < #v and both have IID chance functions735

by Proposition A.3. We also know, by Fact A.5 that if #w < ℓ(n) and w is IID,736

Pw(H) < ℓ(n)
n .737

It will be useful below to consider a special IID probability function Pℓ over738

W but not in P such that Pℓ(H) = ℓ(n)
n . The following lemma will serve to put an739

important constraint on Pℓ. Namely, if ⟨W,P⟩ validates Simple Trust and Fifty/Fifty,740

then Pℓ(H | ⟨Hn
≥ 2−n

⟩) ≥ 2−n.741

Lemma A.6. Let ⟨W,P⟩ be an n-flip frame validating Simple Trust with at least one742

IID function P ∈ P such that P(H) ≥ 1/2. For any x ∈ (0, 1), let P(x) = IID(x).33 Let743

f (x) = P(x)(Hn
| ⟨P(Hn) ≥ 2−n

⟩). Then f is strictly increasing over (0, 1).744

Proof. Let V B {w ∈ W | Pw(Hn) ≥ 2−n
}. Note that the requirement that there be at

least one IID chance function P ∈ P such that P(H) ≥ 1/2 guarantees V is non-empty.

33Note that P(x) is not necessarily in P.
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Let V(k) B |{w ∈ V : #w = k}|. With f and P(x) defined as above, we then have

f (x) =
xn

P(x)(V)
(4)

=
xn∑n

k=0 V(k)xk(1 − x)n−k
(5)

f is clearly differentiable, so we just need to check that its derivative is positive.745

This is straightforward but tedious to do. □746

Our next goal is to put lower bounds on ℓ(n) for a given model (Lemma A.8). To747

do so must first prove Lemma A.7, which in turn appeals to the famous Inequality748

of Arithmetic and Geometric Means.749

AM-GM Inequality. For any list of n non-negative reals x1, . . . , xn,

1
n

n∑
i=1

xi ≥

 n∏
i=1

xi


1
n

with equality iff x1 = x2 = · · · = xn.750

Lemma A.7. Suppose n, k ∈N with n > k. Then n
2

n+k
n
≥

n−k
2 .751

Proof. Simple algebra shows that the lemma holds if and only if for all n ≥ k + 2,752

we have:753

(6)
n

n − k
≥ 2

k
n

To prove line (6), first consider a list of numbers x1, . . . , xn with:

xi =

2 i ≤ k
1 i > k

We have:
1
n

∑
xi =

n + k
n

and (∏
xi

) 1
n
= 2

k
n

So, by the AM-GM Inequality, 2
k
n < n+k

n .754

To prove line (6) holds, we just need to determine when n+k
n ≤

n
n−k , and it is easy755

to see this holds whenever n > k. □756

Let ⟨W,P⟩ be an n-flip frame. Suppose w ∈W is a world with #w = ℓ(n) − 1 with
IID chance function Pw. By Fact A.5, if Pw(H) , 1/2, Pw(H) < ℓ(n)

n . Let Pℓ be defined
over W (but not necessarily in P) such that Pℓ = IID( ℓ(n)

n ). By Lemma A.6, we know

Pw(Hn
| ⟨P(Hn) ≥ 2−n

⟩) < Pℓ(Hn
| ⟨P(Hn) ≥ 2−n

⟩).

This will be important for the next lemma.757

Lemma A.8. Suppose ⟨W,P⟩ is an n-flip model validating Simple Trust, Fifty/Fifty, and758

Sufficiency, with ℓ(n) ≥ 2. Let Pℓ(H) = ℓ(n)
n be an IID probability function. Then (1)759

Pℓ(⟨P(Hn) ≥ 2−n
⟩) > 0 and (2) if Pℓ(⟨P(Hn) ≥ 2−n

⟩) ≥ 2−k for k ∈N, then ℓ(n) ≥ n−k
2 .760



22 BIGGER, BADDER BUGS

Proof. Part (1) follows trivially from the fact that ℓ(n) > 0 and Fifty/Fifty.761

We now establish part (2). Let Pw ∈ P be IID with Pw(H) < 1
2 and #w = ℓ(n)−1 > 0.762

Such a Pw is guaranteed to exist by Sufficiency. By Proposition A.2, 0 < Pw(H). Since763

Pw is also IID and ⟨W,P⟩ validates Fifty/Fifty, Pw(⟨P(Hn) ≥ 2−n
⟩) > 0. By Proposition764

A.5, Pw(H) < ℓ(n)
n . Since ⟨W,P⟩ validates Simple Trust, Pw(Hn

| ⟨P(Hn) ≥ 2−n
⟩) ≥ 2−n.765

So, by Lemma A.6,766

(7) Pℓ(Hn
| ⟨P(Hn) ≥ 2−n

⟩) ≥ 2−n

Suppose Pℓ(⟨P(Hn) ≥ 2−n
⟩) ≥ 2−k. We have:

Pℓ(Hn
| ⟨P(Hn) ≥ 2−n

⟩) =
(ℓ(n)/n)n

Pℓ(⟨P(Hn) ≥ 2−n⟩)

≤
(ℓ(n)/n)n

2−k
(8)

So, from lines (7) and (8), it follows that:

2k
(
ℓ(n)

n

)n

≥ 2−n

which holds iff

ℓ(n) ≥
n

21+ k
n

≥
n − k

2
where the last line follows from Lemma A.7.767

□768

Having established a lower bound on ℓ(n), we now aim to establish an upper769

bound. The strategy is to consider a proposition true at just two worlds w and v770

(both IID), where #w = n
2 − k and #v = n

2 + k. When k is sufficiently small, it will turn771

out that the proposition {w, v} attains maximum probability amongst IID chances772

when P = IID(1/2). This fact, which we establish in the next lemma, will then force773

IID chance functions at worlds with roughly n
2 occurrences of heads to assign heads774

probability 1/2.775

Lemma A.9. Suppose n is even, k ∈N, and k2
≤ n/4. Then the polynomial

p
n
2−k(1 − p)

n
2+k + p

n
2+k(1 − p)

n
2−k

achieves its maximum over the unit interval uniquely at p = 1/2.776

Proof. Without loss of generality, assume p ∈ [0, 1/2]. When p = 1/2, the polynomial
evaluates to 2/2n, so we need to show

p
n
2−k(1 − p)

n
2+k + p

n
2+k(1 − p)

n
2−k
≤

2
2n

with equality iff p = 1/2. From simple algebra, we see this holds iff:777

(9) (2p)
n
2−k(2 − 2p)

n
2+k + (2p)

n
2+k(2 − 2p)

n
2−k
≤ 2

Let x = 1 − 2p, so x ∈ [0, 1]. Line (9) holds just in case:778

(1 − x)
n
2−k(1 + x)

n
2+k + (1 − x)

n
2+k(1 + x)

n
2−k
≤ 2
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This in turn holds iff:779

(10) (1 − x)
n
2−k(1 + x)

n
2−k

[
(1 − x)2k + (1 + x)2k

]
≤ 2

Further, the left-hand side of line (10) decreases with n. Since k2
≤ n/4, we just need780

to check that it holds for n = 4k2.781

The right- and left-hand sides are equal in line (10) when x = 0. The left-hand782

side is differentiable, so to prove the theorem we just need to show the derivative783

is negative.784

Taking the derivative of the LHS of line (10) when n = 4k2 and simplifying is785

tedious, but we end up with:786

−2k(1 − x2)2k2
−k−1

(
(1 + x)2k(2kx − 1) + (1 − x)2k(2kx + 1)

)
Factoring out the −2k(1 − x2)2k2

−k−1 out front, we see we need to verify that:787

(11) (1 + x)2k(2kx − 1) + (1 − x)2k(2kx + 1) > 0

for k ≥ 1.788

Using binomial expansion, we see verifying line (11) is equivalent to verifying:789

(12)
2k∑
i=0

(
2k
i

) [
xi(2kx − 1) + (−x)i(2kx + 1)

]
> 0

The left-hand-side of line (12), in turn, simplifies to:790

4kx2k+1 + 2
k−1∑
i=0

[(
2k
2i

)
2k −

(
2k

2i + 1

)]
x2i+1

It is straightforward to check that
(2k

2i
)
2k −

( 2k
2i+1

)
> 0, which ensures the inequality791

of line (12) holds, as desired. □792

We now can provide an upper bound on ℓ(n).793

Lemma A.10. Suppose ⟨W,P⟩ is an n-flip model satisfying Simple Trust, Fifty/Fifty,794

Symmetry, and Sufficiency with n ≥ 4. Then ℓ(n) ≤ n−
√

n
2 .795

Proof. Let j ≤
√

n
2 with j ∈N. By Sufficiency and Symmetry, there exist w, v ∈W such796

that #w = n
2 − j and #v = n

2 + j and where Pw and Pv are both IID, and Pv(T) = Pw(H).797

Consider the proposition X = {w, v}. Let Ph be an IID chance function at a world798

h with #h = n/2. By Fifty/Fifty, Ph(H) = 1/2. Lemma A.9 entails that Ph assigns a799

strictly higher probability to X (viz, 2−n+1) than any other IID probability function800

does.801

Claim: Pw(H) = 1/2. For suppose not. Then Pv(H) , 1/2. In this case, X∩ ⟨P(X) ≥802

2−n+1
⟩ = ∅. So, since Ph(⟨P(X) ≥ 2−n+1

⟩) > 0, Ph(X | ⟨P(X) ≥ 2−n+1
⟩) = 0, violating803

Simple Trust.804

So, if j ≤
√

n
2 , then n

2 − j ≤ ℓ(n). Therefore, ℓ(n) ≤ n−
√

n
2 as desired. □805

Theorem A.11. Suppose ⟨W,P⟩ is an n-flip model that validates Simple Trust, Symmetry,806

and Fifty/Fifty and n ≥ 6. Suppose all functions in P are IID. Then for all w ∈ W, if807

0 < #w < n, Pw(H) = 1/2.808
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Proof. Suppose ℓ(n) ≥ 1, and let Pℓ(H) = ℓ(n)
n with Pℓ an IID probability function809

defined over W. Let X be a random variable such that X(w) = #w for w ∈ W.810

X ∼ B(n, ℓ(n)/n) according to Pℓ. The mode of B(n, ℓ(n)/n) = ℓ(n)/n, which means Pℓ(⟨X ≥811

ℓ(n)/n⟩) ≥ 1
2 . By Lemma A.8, ℓ(n) ≥ n−1

2n . Since ℓ(n) is an integer with n ≥ 6, ℓ(n) = n/2.812

But by Lemma A.10, ℓ(n) ≤
√

n
2 − 1. So, n/2 ≤

√
n

2 − 1, which is impossible when813

ℓ(n) ≥ 6. So, ℓ(n) = 1 for all n ≥ 6. This completes the proof. □814

Theorem A.12. Suppose ⟨W,P⟩ is an n-flip model that validates Symmetry, Fifty/Fifty,815

and n ≥ 6, and π is a regular probability function that totally trusts ⟨W,P⟩. Suppose all816

functions in P are IID. Then for all w ∈W if 0 < #w < n, Pw(H) = 1/2.817

Proof. This follows immediately from Theorems A.1 and A.11. □818

We will now see how we can relax the assumption that all chance functions are819

IID and still cause trouble for the Humeans.820

Lemma A.13. Suppose ⟨W,P⟩ is an n-flip model satisfying Simple Trust, Fifty/Fifty,821

Monotonicity, Symmetry, and Sufficiency. Then Pℓ(⟨P(Hn) ≥ 2−n
⟩) ≤ 2−

√
n.822

Proof. Given the assumptions, we know from Lemma A.8, that if Pw(⟨P(Hn) ≥823

2−n
⟩) > 2−k, n−k

2 ≤ ℓ(n). From the assumptions and Lemma A.10, we know ℓ(n) ≤824

n−
√

n
2 . So, k ≥

√
n, meaning Pℓ(⟨P(Hn) ≥ 2−n

⟩) ≤ 2−
√

n. □825

Note that ⟨IID(P) and P(H) ≥ 1
2 ⟩ ⊆ ⟨P(Hn) ≥ 2−n

⟩. So, what Lemma A.13 entails826

is the following: Let Pw be an IID chance function that assigns probability under827

1/2 to H, but such that if Pv ∈ P is IID and Pv(H) < 1/2, then Pv(H) ≤ Pw(H). It’s828

easy to show, given the assumptions, that Pw(⟨P(Hn) ≥ 2−n
⟩) < Pℓ(⟨P(Hn) ≥ 2−n

⟩).829

Intuitively, at least when n is big, Pw(H) should be just under 1/2. After all,830

if just one more tail had been heads, then (if done in a way that maintained831

IID), the chance of heads would have been 1/2. But Theorem A.13 entails that832

Pw(⟨P(Hn) ≥ 2−n
⟩) ≤ 2−

√
n, which is small. (E.g., when n is 10, this quantity is833

Pw(⟨P(Hn) ≥ 2−n
⟩) < .12. When n = 100, Pw(⟨P(Hn) ≥ 2−n

⟩) < .001.) This can only834

be the case if either Pw(H) is extremely small, or very few worlds have IID chance835

functions. Indeed, as n grows, the proportion of worlds with approximately n/2836

heads tends toward 1 (where “approximately” here means within x% of n/2). So,837

either Pw(H) must tend toward 0 or the percentage of worlds with IID chance838

functions must tend toward 0 very quickly. This is why, intuitively, when we add839

Boundedness, we end up with the Serious Triviality result in the main text.840

Theorem A.14. Let ⟨W1,P1⟩, ⟨W2,P2⟩, . . . be a sequence of models with |Wi| < |Wi+1|.841

Assume each validates Simple Trust, Sufficiency, Fifty/Fifty, and Symmetry. Moreover,842

assume that Boundedness holds of the sequence. Then there exists an N ∈ N such that if843

i ≥ N and Pw ∈ Pi is IID, then Pw = IID(1/2).844

Proof. Suppose ℓ(n) ≥ 2. Let Pℓ be IID with Pℓ(H) = ℓ(n)
n . Let IID(W) B {w ∈ W :845

Pw is IID}, and let h(W) B {w ∈W : ℓ(n) ≤ #w ≤ n − ℓ(n)}.846

Note that, given Symmetry, if w ∈ h(W) ∩ IID(W), then Pw(H) = 1/2. So,847

(13) d · Pℓ(h(W)) ≤ Pℓ(h(W) ∩ IID(W)) ≤ 2−
√

n

where the first inequality follows from Strong Sufficiency with threshold d, and the848

second from Lemma A.13.849
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We will now show that for large enough n, d ·Pℓ(h(W)) > 2−
√

n, contradicting line850

(13). For fixed ⟨W,P⟩, let X(w) = #w. If X ∼ B(n, p), then X has increasing variance851

with p over [0, 1/2]. By Lemma A.10, ℓ(n) ≤ n−
√

n
2 . So, the minimum possible value852

for Pℓ(h(W)) is achieved when Pℓ(H) = n−
√

n
2n .853

So, assume Pℓ(H) = n−
√

n
2n . If X ∼ B

(
n, n−

√
n

2n

)
, then σ(X) =

√
n−1
2 , where σ(X) rep-854

resents the standard deviation of X. By Chebyshev’s Inequality, we then know855

Pℓ
(

n−3
√

n
2 ≤ X ≤ n+

√
n

2

)
> 3

4 (since the probability X is within two standard devia-856

tions must be at least 3
4 ). But, the mode of X is ℓ(n), so Pℓ(X < ℓ(n)) < 1/2. Therefore,857

Pℓ
(
ℓ(n) ≤ X ≤ n+

√
n

2

)
> 1/4. Thus, Pℓ(h(W) ∩ IID(W)) > d/4. For sufficiently large n,858

d/4 > 2−
√

n, which contradicts line (13). So, for large enough n, ℓ(n) = 1.859

□860

We now can state our final triviality result, referred to as Serious Triviality in the861

main text.862

Theorem A.15. Let ⟨W1,P1⟩, ⟨W2,P2⟩, . . . be a sequence of models with |Wi| < |Wi+1|.863

Assume each validates Sufficiency, Fifty/Fifty, and Symmetry. Moreover, assume that Bound-864

edness holds of the sequence. Then there exists an N ∈ N such that if i ≥ N and some865

regular probability function totally trusts ⟨Wi,Pi⟩, then for all Pw ∈ Pi such that IID(Pw),866

we have Pw = IID(1/2).867

Proof. This follows from Theorems A.1 and A.14. □868

References869

Arntzenius, F. and N. Hall (2003). On what we know about chance. British Journal870

for the Philosophy of Science 54(2), 171–179.871

Bigelow, J., J. Collins, and R. Pargetter (1993). The big bad bug: What are the872

Humean’s chances? The British Journal for the Philosophy of Science 44(3), 443–462.873

Briggs, R. (2009a). The anatomy of the big bad bug. Noûs 43(3), 428–449.874
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